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a. This is a SIMO channel with perfect channel knowledge. Since each antenna receives the same fraction of the

transmitted power, we have ‖g‖2 = M λ2

(4π)2
1
d2 .

The capacity is then given by

C = B log2

(
1 +

PM

BN0

λ2

(4π)2
1

d2

)
bit/s.

b. By treating the capacity expression in a as an equation, we can solve for d and obtain

d =
λ

4π

√
PM

BN0(2C/B − 1)
.

By inserting the given numbers, we obtain d ≈ 795.77 m.

c. By treating the capacity expression in a as an equation, we can solve for M and obtain

M =

(
4πd

λ

)2
BN0(2C/B − 1)

P
.

By inserting the given numbers (in particular C = 100 Mbit/s and d from b), we obtain M ≈ 1023.

d. The total antenna area is MAiso = M λ2

4π ≈ 0.81 m2.

e. By using the same expression as in c, we now need M = 102300 antennas. However, MAiso = M λ2

4π ≈ 0.81 m2

also in this case.

Answer: See above.

2
The answer should provide a reasonably correct description of the capacity analysis for slow fading channels. The
following things can give one point each (other correct and important statements may also give points):

• Correct explanation of the slow and fast fading concepts (i.e., one random channel realization while transmitting
under slow fading, infinitely many channel realizations under fast fading)

• Correct definition of the outage probability

• Correct definition of the outage capacity
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• Example of how to compute the outage probability for channel of own choice.

• Correct explanation of how the use of multiple antennas improves the outage probability and/or outage capacity.

Answer: See above.
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a. This is the capacity of a MISO channel, which is given by

C = log2(1 + ρ‖g‖2) = log2(1 + 8) ≈ 3.17

since ρ = 2 and ‖g‖2 = M = 4. This capacity expression does not depend on θ.

b. Let g(θ) denote the channel vector as a function of the angle θ. When using an arbitrary precoding vector a,
the achievable information rate is

log2(1 + ρ|g(θ1)Ta|2)

where we used the true angle θ1.

Maximum ratio processing is given by a = g∗(θ)
‖g(θ)‖ . Since the base station believes that θ = 0◦, we get a =

1√
M

[1 1 1 1]T . Hence, the achievable information rate becomes

log2

(
1 +

ρ

M

∣∣∣1 + ejπ sin(θ1) + ej2π sin(θ1) + ej3π sin(θ1)
∣∣∣2) .

c. From the triangle inequality we know that∣∣∣1 + ejπ sin(θ1) + ej2π sin(θ1) + ej3π sin(θ1)
∣∣∣ ≤ |1|+ ∣∣∣ejπ sin(θ1)

∣∣∣+
∣∣∣ej2π sin(θ1)

∣∣∣+
∣∣∣ej3π sin(θ1)

∣∣∣ = M = 4

The upper bound is achieved only if all the terms in the sum are equal to one, which happens when sin(θ1) = 0.
Hence θ1 = 0 and θ1 = π are the two angles that maximizes the information rate.

d. The smallest values is clearly equal to zero. Note that all the terms in the sum are of the form ejmπ sin(θ1) for
m = 0, 1, 2, 3, which means that they are on the unit circle. We need these points to be equally spread out on
the unit circle if they should cancel out. This happens if θ1 = π/2 and also when θ1 = 3π/2 (or equivalently
θ1 = −π/2.

Answer: See above
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The capacity lower bound that we are using is:

log2

1 +
ρdlηk|E{gTk ak}|2

K∑
k′=1

ρdlηk′E{|gTk ak′ |2}+ 1− ρdlηk|E{gTk ak}|2


a. We need to compute all the expectations in the expression above. We start with E{gTk ak} =

∑M
m=1E{gkm} = 0

where gkm denotes the mth element in gk. Note that E{gkm} = 0 since the random variable is −1 and +1 with
equal probability. This leads to the ratio inside the logarithm being zero.

We conclude that the capacity lower bound is zero in this case.
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b. We need to compute all the expectations in the expression above. In this case, we get a non-zero expression
since

E{gTk ak} = E{‖gk‖2} =

M∑
m=1

E{|gkm|2} = M.

Note that E{|gkm|2} = 1 since |gkm| = 1 both when the random variable is −1 and +1.

We also need to compute E{|gTk ak′ |2}. We begin with the case of k = k′, which gives

E{|gTk ak|2} = E{‖gk‖4} = E


 M∑
m=1

|gkm|2
2
 = M2

since |gkm|2 = 1.

In the case of k 6= k′, we have

E{|gTk ak′ |2} = E


M∑
m=1

M∑
n=1

gkmgkngk′mgk′n

 = E


M∑
m=1

gkmgkmgk′mgk′m

 = M

since only the case of m = n gives a non-zero value of the expectation.

By substituting these values into the capacity lower bound, we obtain

log2

1 +
ρdlηkM

2

K∑
k′=1,k′ 6=k

ρdlηk′M + 1


c. In this case, we know from the derivations in the course book that

E{gTk g∗k} = M

E{|gTk g∗k′ |2} =

{
M2 +M if k′ = k

M if k′ 6= k.

By substituting these values into the capacity lower bound, we obtain

log2

1 +
ρdlηkM

2

K∑
k′=1

ρdlηk′M + 1

 .

The only difference from the previous expression is that the desired user is included in the summation in the
denominator. Hence, the case with i.i.d. CN(0,1) elements gives the lowest value of the capacity lower bound.
The reason is the larger variation in the gain gTk ak when having Rayleigh fading.

Answer: See above.
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a. The conventional expression from the table of formulas is

SINRmr,dl
l1 =

Mρdlγ
l
l1ηl1

1 + ρdl
2∑

l′=1

βl
′
l1ηl′1 +Mρdl

2∑
l′=1,l′ 6=l

γl
′
l1ηl′1

for the case of K = 1 (and hence k = 1 is the user of interest) and two cells that use the same pilot.

The M is the numerator is the number of antennas at base station l, since it is the beamforming gain of the
signal transmission to the user in cell l. The M in denominator is the number of antennas at the base station
l′ 6= l, because it is the coherent interference caused by the other base station due to pilot contamination.

Hence, the SINR of the user in cell 1 is

SINRmr,dl
11 =

M1ρdlγ
1
11η11

1 + ρdl
2∑

l′=1

βl
′
11ηl′1 +M2ρdlγ211η21

and the SINR of the user in cell 2 is

SINRmr,dl
21 =

M2ρdlγ
2
21η21

1 + ρdl
2∑

l′=1

βl
′
21ηl′1 +M1ρdlγ121η11

b. By using the expressions from a, we observe that SINRmr,dl
11 → ∞ and SINRmr,dl

21 → 0. The reason is that the
beamforming gain of the user in cell 1 grows with the number of antennas M1 at its serving base station, while
the pilot-contaminated coherent interference that is caused to the user in cell 2 grows with M1 and makes the
SINR go to zero.

c. By inserting M1 = c1M and M2 = c2M into the expressions and then taking the limit we obtain

SINRmr,dl
11 → c1ρdlγ

1
11η11

c2ρdlγ211η21

and

SINRmr,dl
21 =

c2ρdlγ
2
21η21

c1ρdlγ121η11
.

Since the numbers of antennas at both base stations are growing, both the beamforming gain and the coher-
ent interference from pilot contamination grows towards infinity. The consequence is that the non-coherent
interference and noise vanish asymptotically.

d. We need to utilize the expressions for γ111, γ211, γ121, and γ221 since they contain the uplink power and it decreases
as 1/M . In particular, Mγ111 → (β1

11)2, Mγ211 → (β2
11)2, Mγ121 → (β1

21)2, and Mγ221 → (β2
21)2. Hence, the limits

are

SINRmr,dl
11 =

c1ρdl(β
1
11)2η11

1 + ρdl
2∑

l′=1

βl
′
11ηl′1 + c2ρdl(β2

11)2η21

and

SINRmr,dl
21 =

c2ρdl(β
2
21)2η21

1 + ρdl
2∑

l′=1

βl
′
21ηl′1 + c1ρdl(β1

21)2η11

.

Answer:


