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a. Following the derivation in Section 5.3.1 of “Fundamentals of Wireless Communications”, the capacity is

C = log2(1 + P‖g‖2) = log2(1 + PM) bit/s/Hz.

This capacity is achieved if x[m] ∼ CN(0, P ).

b. You need (26 − 1)/P = 12.6 antennas. The smallest integer number is therefore M = 13.

c. You need a power of P = (26 − 1)/50 = 1.26.

d. The sign of the elements does not matter when computing ‖g‖2. We thus have ‖g‖2 = M just as in Part a. The
capacity is still log2(1 + PM) bit/s/Hz.

Answer: See above.
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A coherence interval is a part of the time-frequency space in which a channel can be considered constant and frequency-
flat, so that the channel can be described by constant multiplication with a scalar/vector/matrix. The number of
symbols in a coherence interval is τc = TcBc, where Tc is the coherence time and Bc is the coherence bandwidth.

The coherence time is affected by how quickly things around the transmitter and the received move (or how quickly
the transceivers move). The quicker they more, the faster the channel will change. A rule of thumb is that Tc is in

the order of
λ

2v
, where λ is the wavelength of the carrier and v is the speed of fastest moving object in the vicinity of

the transceivers.

The coherence bandwidth is affected by the time difference between the received signal components in a multipath
environment. The larger the difference is between the shortest and the longest path (measured in time by the delay
spread Td), the smaller is the coherence bandwidth. A rule of thumb is that Bc is in the order of c/Td, where c is the
speed of light and Td is the delay spread.

The coherence interval concept is important in massive MIMO because, in order to use the many antennas, the base
station first estimates the channel. This channel estimate is only valid for τc samples (channel uses), and then the
base station has to estimate the channel again. The finite coherence interval dimensionality is the reason why massive
MIMO need TDD operation in order to handle a large number of antennas, since in TDD the number of pilots is
proportional to the number of users. Pilots, uplink data, and downlink data must all fit into one coherence interval.

Answer: See above.
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a. The capacity of a point-to-point MIMO channel is achieved by the waterfilling power allocation. From the course
book, we know that the capacity is

C =

2∑
i=1

log2(1 + ρqidi)

where di is the ith eigenvalue of GHG and q1, q2 are obtained from the waterfilling algorithm.

In this case,

GHG =

[
2 0
0 2

]
and thus d1 = d2 = 2. Since the eigenvalues are equal, there is no reason for one eigenvalue to get more transmit
power than the other; the expressions are equal in the waterfilling algorithm. Hence, the power must be equally
distributed: q1 = q2 = 1/2. The capacity then becomes

C = 2 log2

(
1 + 2 · 1

2
· 2
)

= 2 log2(3) ≈ 3.17

b. We can use the same methodology, but now

GHG =

[
2 0
0 8

]
and thus d1 = 2 and d2 = 8.

We know need to apply the waterfilling algorithm to find q1, q2. It says that we should find the largest µ ≥ 0
such that q1 + q2 = 1 and qi = (µ− 1

ρdi
)+.

If 0 < µ < 1
4 , we will get q1 = 0, but in this case we have q2 <

3
16 < 1 so the constraint q1 + q2 = 1 is not

satisfied. Consequently, we need to have µ > 1
4 and then q1 > 0 and q2 > 0.

We then have 1 = q1 + q2 = µ − 1
4 + µ − 1

16 = 2µ − 5
16 , from which we get µ = 21

32 and eventually q1 = 13
32 and

q2 = 19
32 . The capacity then becomes

C = log2

(
1 + 2 · 13

32
· 2
)

+ log2

(
1 + 2 · 19

32
· 8
)
≈ 4.78

c. The capacity is achieved by sending a Gaussian signal x = [x1 x2]T , where x1 ∼ CN(0, 13/32) and x2 ∼
CN(0, 19/32) are independent (The SNR is excluded from these expressions.)

Answer: a) C ≈ 3.17, b) C ≈ 4.78, c) x = [x1 x2]T , where x1 ∼ CN(0, 13/32) and x2 ∼ CN(0, 19/32).

4

a. Figure C.4 in “Fundamentals of Massive MIMO” is what should be drawn and one needs to point out which
equation that gives each of the three sides (called (C.40)-(C.42) in that book).

b. For this to happen, we need

log2(1 + P‖g1‖2) + log2(1 + P‖g2‖2) = log2 |IK + PGHG|.

By expanding the determinant of the two-by-two matrix inside the last logarithm, we get

log2 |IK + PGHG| = log2

(
(1 + P‖g1‖2)(1 + P‖g2‖2)− P 2|gH2 g1|2

)
where the largest value that the term −P 2|gH2 g1|2 can take is zero, which is achieved when gH2 g1 = 0. In this
case, the right hand side becomes log2(1 + P‖g1‖2) + log2(1 + P‖g2‖2). Hence, gH2 g1 = 0 is the condition that
we are looking for. It means that the two vectors are orthogonal and this condition has also been called favorable
propagation in the course.
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c. If M is even, then gH2 g1 = 0. In that case, the sum rate is 2 log2(1 +M) and we need M ≥ (210/2 − 1) = 31 to
give the required performance. This is satisfied for M = 32, 34, . . ..

If M is odd, then gH2 g1 = 1 and the sum rate log2((1 + M)2 − 1) and we need M ≥
√

210 + 1 − 1 ≈ 31.0156.
This is satisfied for M = 33, 35, . . ..

In summary, the condition is satisfied for all M ≥ 32.

Answer: See above.
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a. In the first case, Pl = {1, . . . , L}, the same pilot sequences are reused in every cell. This will lead to pilot
contamination. In the second case, Pl = {l}, every cell has its own exclusive set of pilots. There is no pilot
contamination in this case.

b. As M →∞, we have

log2(1+SINRzf,ul
lk )−log2(1+SINRmr,ul

lk )→ log2

1 +
ρulγ

l
lkηlk

ρul
∑

l′∈Pl\{l}
γll′kηl′k

−log2

1 +
ρulγ

l
lkηlk

ρul
∑

l′∈Pl\{l}
γll′kηl′k

 = 0.

c. In this case, the summations
∑

l′∈Pl\{l}
disappear since Pl \ {l} is an empty set. As M →∞, we have

log2(1 + SINRzf,ul
lk )− log2(1 + SINRmr,ul

lk ) = log2

(
1 + SINRzf,ul

lk

1 + SINRmr,ul
lk

)

→ log2


1 + ρul

∑
l′∈Pl

K∑
k′=1

βll′k′ηl′k′ + ρul
∑
l′ 6∈Pl

K∑
k′=1

βll′k′ηl′k′

1 + ρul
∑
l′∈Pl

K∑
k′=1

(βll′k′ − γll′k′)ηl′k′ + ρul
∑
l′ 6∈Pl

K∑
k′=1

βll′k′ηl′k′

 .

d. In the first case, Pl = {1, . . . , L}, zero-forcing and maximum-ratio are equally good asymptotically. In the second
case, the limit is a positive number since∑

l′∈Pl

K∑
k′=1

βll′k′ηl′k′ >
∑
l′∈Pl

K∑
k′=1

(βll′k′ − γll′k′)ηl′k′ .

This implies that zero-forcing is better than maximum-ratio as M → ∞. The conclusion is that zero-forcing is
the best choice.

e. When there is only one cell, there is no pilot contamination. Hence, we can follow the same derivation as in Part
c but remove all terms for l > 1:

log2(1 + SINRzf,ul
1k )− log2(1 + SINRmr,ul

1k ) = log2

(
1 + SINRzf,ul

1k

1 + SINRmr,ul
1k

)

→ log2


1 + ρul

K∑
k′=1

βl1k′η1k′

1 + ρul
K∑
k′=1

(βl1k′ − γl1k′)η1k′

 .

which is also greater than zero. Hence, zero-forcing remains to be the better choice.

Answer: See above.


