

1(7)

Exam in TSKS01 Digital Communication

Exam code:	TEN1							
Date:	2020-01-16 Time: 14:00–18:00							
Place:	U3, U6							
Teacher:	Emil Björnson, tel: 013 - 28 67 32.							
Visiting exam:	Around 15 and 16							
Administrator:	Carina Lindström, 013 - 28 44 23, carina.e.lindstrom@liu.se							
Department:	ISY							
Allowed aids:	Pocket calculator with empty memory. Olofsson: Tables and Formulas for Signal Theory.							
Number of tasks:	7							
Solutions:	Will be published within one week after the exam at http://www.commsys.isy.liu.se/TSKS01							
Result:	You get a message about your result via an automatic email from Ladok. Note that we cannot file your result if you are not registered on the course. That also means that you will not get an automated email about your result if you are not registered on the course.							
Exam return:	2020-02-12, 12:45–13:10, Emil Björnson's office, Building B, top floor, corridor A between entrances 27–29. After that in the student office of Dept. of EE. (ISY), Building B, Corridor D, between Entrances 27–29, right next to Café Java.							
Important:	Solutions and answers must be given in English.							

- **Grading:** This exam consists of three parts: an introductory task, a question part, and a problem-solving part. The introductory task consists of two rather simple subtasks that test the ability to perform standard calculations. Each task in the question part and the problem-solving part can give the number of points indicated in the margin. The question part can give you at most 10 points and the problem-solving part can give you at most 20 points. For passing the exam, you need
 - at least one of the two subtasks of the introductory task solved correctly,
 - at least 3 points from the question part,
 - at least 6 points from the problem-solving part,
 - and totally at least 14 points.

Grade limits:

- Grade three (ECTS C): 14 points,
- Grade four (ECTS B): 19 points,
- Grade five (ECTS A): 24 points.

Sloppy solutions and solutions that are hard to read are subject to hard judgement, as are unreasonable answers.

Introductory task

- 1 This task has to be solved correctly as partial fulfillment for passing the exam.
 - **a**. A binary modulation scheme uses the following two signal points:

Determine the error probability if we communicate over an AWGN channel where the noise has power spectral density $N_0/2 = 3$. The receiver uses an ML detector.

b. Consider a linear block code for error control with parity check matrix

Determine whether $x = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$ is a codeword of this code or not. Motivate your answer.

Question part

2 Explain how convolutional codes work. Make sure to describe how to gen- (5 p) erate codewords and how to decode the received signals.

Give an example of a convolutional code with rate 1/3. Find the output of the encoder (codeword) for the information bit sequence "0110". Find the generator matrix G(D) for this example code.

- **3** Are the following claims true or false? You do not need to explain your (5p) answers.
 - **a**. The minimum distance of a linear block code is equal to the smallest Hamming weight among all the codewords.
 - **b**. The parity check matrix is the transpose of the generator matrix.
 - c. The signal space dimension of 8-PSK is 2.
 - d. The Viterbi algorithm is an approximate implementation of sequential ML detection.
 - e. The Q function satisfies $Q^2(x) \leq Q(x)$ for $x \geq 0$.

For each of the claims above, a correct answer gives you +1 point, while an incorrect answer gives you -1 point. No answer give you 0 points for that claim, so a good strategy is to only give an answer if you are sure that it is correct. You cannot get less than 0 points totally from this task.

Problem-solving part

- 4 Consider a CRC code with polynomial $p(x) = x^8 + x^2 + x + 1$. The highest (5p) degree among all possible message polynomials is 3.
 - **a**. Determine the dimension, length, and the rate of this code. (2p)
 - **b**. Will this code detect an error in a received signal containing the error pattern $w(x) = x^{11} + x^9 + x^8 + x^5 + x^4 + 1$? (3p)

5 A digital transmission system uses the following three equally probable sig- (5p) nals:

- a. Determine an ON-basis for the given signal set. Express the signals as vectors in this basis and draw the corresponding constellation diagram.
 (2p)
- b. What is the average symbol energy? What is the maximum signal energy? (1p)
- c. Draw the decision regions for ML detection. (1p)
- **d**. Compute the union bound on the symbol error probability if the communication is done over an AWGN channel with ML detection. (1p)
- 6 Consider a sequence of independent information symbols s[n] from a constellation of size M, for n = 0, 1, ..., V - 1. These symbols are transmitted over the dispersive channel

$$Z[k] = \sum_{l=0}^{L} s[k-l]g[l] + W_{\gamma}[k],$$

where we assume that $s[-L+1], \ldots, s[-1]$ are known in advance.

- **a**. Determine the ML decision rule if the noise $W_{\gamma}[k]$ is independent and has a Gaussian distribution with mean m_w and variance σ^2 .
- **b**. Interpret the ML decision rule geometrically. Can it be expressed as a Euclidean distance between two points?
- c. Can the Viterbi algorithm be applied in this case? If yes, suggest a transition metric $\Lambda_k(s[k], \mathcal{S}[k])$ that can be used.

7 Consider the following two signal space diagrams with 8-ary constellations: (5p)

All signal points are equally probable.

a. Compute the maximum symbol energy for both constellations, expressed as functions of d.

(2p)

6(7)

b. Suppose we communicate over an AWGN channel with noise power spectral density $N_0/2$. Find the nearest neighbour approximations of the symbol error probabilities of the two constellations.

(2p)

c. For the same maximum symbol energy, which constellation is preferable? Motivate the answer based on the results in Part **b**.

(1p)

TSKS01 Digital Communication

The *Q*-function, table of $Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ for $0.00 \le x \le 5.99$.

x	0	1	2	3	4	5	6	7	8	9	\exp
0.0	5.0000	4.9601	4.9202	4.8803	4.8405	4.8006	4.7608	4.7210	4.6812	4.6414	
0.1	4.6017	4.5620	4.5224	4.4828	4.4433	4.4038	4.3644	4.3251	4.2858	4.2465	
0.2	4.2074	4.1683	4.1294	4.0905	4.0517	4.0129	3.9743	3.9358	3.8974	3.8591	
0.3	3.8209	3.7828	3.7448	3.7070	3.6693	3.6317	3.5942	3.5569	3.5197	3.4827	
0.4	3.4458	3.4090	3.3724	3.3360	3.2997	3.2636	3.2276	3.1918	3.1561	3.1207	
0.5	3.0854	3.0503	3.0153	2.9806	2.9460	2.9116	2.8774	2.8434	2.8096	2.7760	_1
0.6	2.7425	2.7093	2.6763	2.6435	2.6109	2.5785	2.5463	2.5143	2.4825	2.4510	1
0.7	2.4196	2.3885	2.3576	2.3270	2.2965	2.2663	2.2363	2.2065	2.1770	2.1476	
0.8	2.1186	2.0897	2.0611	2.0327	2.0045	1.9766	1.9489	1.9215	1.8943	1.8673	
0.9	1.8406	1.8141	1.7879	1.7619	1.7361	1.7106	1.6853	1.6602	1.6354	1.6109	
1.0	1.5866	1.5625	1.5386	1.5151	1.4917	1.4686	1.4457	1.4231	1.4007	1.3786	
1.1	1.3567	1.3350	1.3136	1.2924	1.2714	1.2507	1.2302	1.2100	1.1900	1.1702	
1.2	1.1507	1.1314	1.1123	1.0935	1.0749	1.0565	1.0383	1.0204	1.0027	9.8525	
1.3	9.6800	9.5098	9.3418	9.1759	9.0123	8.8508	8.6915	8.5343	8.3793	8.2264	
1.4	8.0757	7.9270	7.7804	7.6359	7.4934	7.3529	7.2145	7.0781	6.9437	6.8112	
1.5	6.6807	6.5522	6.4255	6.3008	6.1780	6.0571	5.9380	5.8208	5.7053	5.5917	
1.6	5.4799	5.3699	5.2616	5.1551	5.0503	4.9471	4.8457	4.7460	4.6479	4.5514	
1.7	4.4565	4.3633	4.2716	4.1815	4.0930	4.0059	3.9204	3.8364	3.7538	3.6727	-2
1.8	3.5930	3.5148	3.4380	3.3625	3.2884	3.2157	3.1443	3.0742	3.0054	2.9379	
1.9	2.8717	2.8067	2.7429	2.6803	2.6190	2.5588	2.4998	2.4419	2.3852	2.3295	
2.0	2.2750	2.2216	2.1692	2.1178	2.0675	2.0182	1.9699	1.9226	1.8763	1.8309	
2.1	1.7864	1.7429	1.7003	1.6586	1.6177	1.5778	1.5386	1.5003	1.4629	1.4262	
2.2	1.3903	1.3553	1.3209	1.2874	1.2545	0.2224	0.1275	1.1604	1.1304	1.1011	
2.3	1.0724 9.1075	7.0762	7.7602	9.9031	9.0419	9.3807	9.1373	8.8940 6.7557	8.0003 6 5601	8.4242 6.2872	
2.4 2.5	6.1975 6.2007	6.0266	1.1005 5.9677	7.0494 5 7021	7.3430 5.5496	1.1420 5 2961	0.9409 5 9226	5.0940	4.0400	0.3872	
2.0	0.2097	4 5971	4 2065	4 9609	0.0420	1.0046	2.0070	2 7026	4.9400 2.6911	4.1900	
$\frac{2.0}{2.7}$	34670	$\frac{4.5271}{3.3642}$	$\frac{4.3903}{3.2641}$	$\frac{4.2092}{3.1667}$	3.0720	2.9798	2.89010	2.8028	2.7179	2.6354	-3
2.8	2 5551	2.4771	2.4012	2.3274	2.2557	2.1860	2.1182	2.0020 2.0524	1 9884	1 9262	
2.9	1.8658	1.8071	1.7502	1.6948	1.6411	1.5889	1.5382	1.4890	1.4412	1.3949	
3.0	1.3499	1.3062	1.2639	1.2228	1.1829	1.1442	1.1067	1.0703	1.0350	1.0008	
3.1	9.6760	9.3544	9.0426	8.7403	8.4474	8.1635	7.8885	7.6219	7.3638	7.1136	
3.2	6.8714	6.6367	6.4095	6.1895	5.9765	5.7703	5.5706	5.3774	5.1904	5.0094	
3.3	4.8342	4.6648	4.5009	4.3423	4.1889	4.0406	3.8971	3.7584	3.6243	3.4946	4
3.4	3.3693	3.2481	3.1311	3.0179	2.9086	2.8029	2.7009	2.6023	2.5071	2.4151	-4
3.5	2.3263	2.2405	2.1577	2.0778	2.0006	1.9262	1.8543	1.7849	1.7180	1.6534	
3.6	1.5911	1.5310	1.4730	1.4171	1.3632	1.3112	1.2611	1.2128	1.1662	1.1213	
3.7	1.0780	1.0363	9.9611	9.5740	9.2010	8.8417	8.4957	8.1624	7.8414	7.5324	
3.8	7.2348	6.9483	6.6726	6.4072	6.1517	5.9059	5.6694	5.4418	5.2228	5.0122	_
3.9	4.8096	4.6148	4.4274	4.2473	4.0741	3.9076	3.7475	3.5936	3.4458	3.3037	-5
4.0	3.1071	3.0359	2.9099	2.7888	2.6726	2.5609	2.4536	2.3507	2.2518	2.1569	
4.1	2.0008	1.9783	1.8944	1.8138	1.7300 1.1176	1.0024	1.0912 1.0001	1.5230	1.4373	0.0227	
4.2	8 5300	8 1627	7 8015	7 4555	7 1941	6.8060	6 5031	9.7730	9.3447 5.0340	0.9337 5.6675	
4.5	5 4195	5 1685	1.0010	1.4000	1.1241	4 2025	4 0080	3 0110	3 7399	3 5619	6
4.4	3.4120 3.3077	3 9/17	3 0020	2 0/02	4.4979 9.8197	4.2930 2.6823	2.0500 2.5577	2 / 386	2 32/0	2.0012 2.2162	-0
4.5	2 1125	2.2414 2.0133	1.0320 1.0187	1 8283	1.7420	1.6597	1 5810	1.5060	1.3243 1.4344	1 3660	
4.0	1 3008	1 2386	1 1792	1.0200 1 1226	1.0686	1.0001	9.6796	9.2113	8 7648	8 3391	
4.8	7.9333	7.5465	7.1779	6.8267	6.4920	6.1731	5.8693	5.5799	5.3043	5.0418	
4.9	4.7918	4.5538	4.3272	4.1115	3.9061	3.7107	3.5247	3.3476	3.1792	3.0190	-7
5.0	2.8665	2.7215	2.5836	2.4524	2.3277	2.2091	2.0963	1.9891	1.8872	1.7903	
5.1	1.6983	1.6108	1.5277	1.4487	1.3737	1.3024	1.2347	1.1705	1.1094	1.0515	
5.2	9.9644	9.4420	8.9462	8.4755	8.0288	7.6050	7.2028	6.8212	6.4592	6.1158	
5.3	5.7901	5.4813	5.1884	4.9106	4.6473	4.3977	4.1611	3.9368	3.7243	3.5229	0
5.4	3.3320	3.1512	2.9800	2.8177	2.6640	2.5185	2.3807	2.2502	2.1266	2.0097	-0
5.5	1.8990	1.7942	1.6950	1.6012	1.5124	1.4283	1.3489	1.2737	1.2026	1.1353	
5.6	1.0718	1.0116	9.5479	9.0105	8.5025	8.0224	7.5686	7.1399	6.7347	6.3520	
5.7	5.9904	5.6488	5.3262	5.0215	4.7338	4.4622	4.2057	3.9636	3.7350	3.5193	-9
5.8	3.3157	3.1236	2.9424	2.7714	2.6100	2.4579	2.3143	2.1790	2.0513	1.9310	Ŭ
5.9	1.8175	1.7105	1.6097	1.5147	1.4251	1.3407	1.2612	1.1863	1.1157	1.0492	

For x > 0, we have $(1 - x^{-2}) \frac{1}{x\sqrt{2\pi}} e^{-x^2/2} dt < Q(x) < \frac{1}{x\sqrt{2\pi}} e^{-x^2/2} dt$. For large x we have $Q(x) \approx \frac{1}{x\sqrt{2\pi}} e^{-x^2/2} dt$.